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Although surface soil moisture data from different sources (satellite retrievals, 

ground measurements, and land model integrations of observed meteorolog- 

ical forcing data) have been shown to contain consistent and useful informa- 

tion in their seasonal cycle and anomaly signals, they typically exhibit very 

different mean values and variability. These biases pose a severe obstacle to 

exploiting the useful information contained in satellite retrievals through data 

assimilation. A simple method of bias removal is to match the cumulative 

distribution functions (cdf) of the satellite and model data. However, accu- 

rate cdf estimation typically requires a long record of satellite data. We demon- 

strate here that by using spatial sampling with a 2 degree moving window 

we can obtain local statistics based on a one-year satellite record that are 

a good approximation to those that would be derived from a much longer 

time series. This result should increase the usefulness of relatively short satel- 

lite data records. 
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1. Motivation 

Long-term in situ measurements of soil moisture are limited to parts of Eurasia and 

small sections of North America [Robock et al., 20001. To derive global soil moisture dis- 

tributions, as might be needed for the initialization of seasonal forecast systems [Koster 

et al., 20041, two alternative data sources are often considered. First, useful global dis- 

tributions of soil moisture can be produced by a land surface model when forced with 

observed precipitation, radiation, and other meteorological data [ Rodell et al., 20031. Sec- 

ond, satellite sensors can provide passive C-band (6.6 GHz) or L-band (1.4 GHz) radiance 

measurements that can be interpreted in terms of surface soil moisture content [Owe et al., 

2001; Jackson et al., 20021. However, the model-based product is subject to the many 

limitations of the model used, to errors in the specification of vegetation and soil parame- 

ters, and to errors in the forcing data. The satellite data, for their part, are not available 

everywhere and not available continuously. Also, satellite retrievals represent only a shal- 

low near-surface layer and do not provide critical information about soil moisture in the 

root zone. 

Many have argued that a land assimilation system that merges satellite retrievals and 

model soil moisture will provide optimal global estimates of the state of the land surface. 

In a data assimilation system, a model-generated soil moisture is “corrected” toward an 

observational estimate, with the degree of correction determined by the levels of error 

associated with each. Idealized analyses with large-scale assimilation systems, using syn- 

thetic (model-generated) observational data, demonstrate the potential of the approach 

[Walker and Houser, 2001; Reichle and Koster, 20031. 
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Synthetic data studies, however, avoid a fundamental difficulty associated with satellite 

data assimilation: the strong biases that exist between satellite-based and model-based soil 

moisture estimates [Reichle et al., 20041. The top panel of Figure 1 shows, for example, 

the difference between the mean near-surface soil moisture field retrieved from the C- 

band Scanning Multichannel Microwave Radiometer (SMMR) over the period 1979-1987 

[De Jeu, 20031 and that simulated by the NASA Catchment land surface model [Koster 

et al., 20001 for the same period. Despite global coverage of the satellite, soil moisture 

retrievals are not available in areas that contain frozen soil, a significant fraction of surface 

water, or dense vegetation. As for the model, it was forced with reanalysis data that have 

been corrected by observations as much as possible [Berg et al., 20031. Precipitation - 

arguably the most critical input for accurate soil moisture modeling - is based on a merged 

product of satellite and gauge data from the Global Precipitation Climatology Project 

(GPCP, Version 2) [Huflman et al., 19971. Model soil moisture data have been generated 

at the exact times and locations of SMMR retrievals, to ensure maximum compatibility 

of the two data sets. The model’s computational units are irregularly shaped catchments 

(or watersheds) with an average area of about 2500km2 [Reichle et al., 20041. 

Figure 1 shows that across the globe, SMMR retrievals are typically wetter than model 

soil moisture, except in the eastern half of North America, northern Eurasia, and the 

Sahel. The bottom panel of Figure 1 shows the corresponding differences in the standard 

deviation (std) of the instantaneous fields, that is the bias in the std. SMMR retrievals 

exhibit more variability than model soil moisture across North America, in northern Eura- 

sia, southern Africa, and southern Australia. Elsewhere, particularly in India, SMMR re- 
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trievals are less variable in time than model soil moisture. (Note that Reichle et ul. [2004] 

used monthly data as opposed to instantaneous data. Consequently, the time series std 

in the present paper is about twice as large.) 

The satellite and model data clearly differ in their statistical moments. These biases 

are not uniform but are spatially distributed with complex patterns and with magnitudes 

on the order of the dynamic range of the signal. Furthermore, the relative accuracy of 

the two datasets cannot be objectively determined. Reichle et al. [2004] demonstrate that 

neither is clearly superior when compared to the limited array of in situ point observations. 

Such bias is unavoidable, both now and in the foreseeable future. Even if the satellite 

retrievals could be considered unbiased relative to nature, simulated soil moisture contents 

reflect the many necessary simplifications imposed in the land surface model and should 

arguably be considered model-specific “indices of wetness” rather than quantities that 

can be measured in the field [Koster and Milly, 19971. (See also [Entin et al., 19991 for a 

strong demonstration of the model-specific nature of simulated soil moisture.) To merge 

successfully the satellite observations with the model data, biases across the statistical 

moments must be quantified and corrected. In effect, the satellite-based moisture contents 

must be converted (“scaled”) into moisture contents consistent with the land surface model 

used. 

Herein lies a major problem. In order to correct the biases, the temporal statistical mo- 

ments of both the simulated soil moisture and the satellite-derived soil moisture must be 

well-established, and without further assumptions, this would require many years of data 

for each. While such data exist for the model-generated estimates, the passive C-band 
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Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) 

has become operational only in June 2002. Two passive L-band sensors, the Soil Moisture 

and Ocean Salinity (SMOS) mission [Ken- et al., 20011 and the Hydrosphere State (HY- 

DROS) mission [Entekhabi et al., 20041, are still in their planning stages. Moreover, the 

expected lifetime of these sensors is only a few years. Given the tremendous investment 

placed in the satellites, researchers are pressured to use the satellite products in a data 

assimilation system as soon as they are produced. 

We thus require a strategy for making use of a short record of satellite data under the 

constraint that we do not have global estimates of the data’s temporal statistical moments. 

(Knowledge of the data’s uncertainty does not ameliorate the problem, since we dso do 

not know the true statistical moments.) Here, we present a viable strategy involving 

the ergodic substitution of variability in space for variability in time. To demonstrate 

the strategy’s effectiveness, we use a single year of the SMMR soil moisture record to 

determine scaling parameters that convert an instantaneous field of SMMR retrievals into 

a soil moisture field consistent with the land surface model used. These scaling parameters 

are then applied to the full 9 years of SMMR data. When the statistical moments of the 9 

years of scaled satellite data are compared to those of the simulated soil moisture fields, the 

biases in the mean and std are seen to be much smaller than those in Figure 1, indicating 

that the scaling, based on a single year of data, was a success. These scaled data can be 

merged more reliably with land model simulations in a data assimilation system. 
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2. Approach 

Our strategy for bias removal is to match the cumulative distribution function (cdf) 

of the satellite retrievals to the cdf of the model soil moisture. Similar cdf matching 

techniques have been used, for example, to establish reflectivity-rainfall relationships for 

calibration of radar or satellite observations of precipitation [AtZus et uZ., 1990; Anugnostou 

et ul., 19991. Our approach is illustrated in Figure 2, which shows cdf’s of surface soil 

moisture at a particular location in the Northern Great Plains (46N, lOOW). At this 

location, SMMR retrievals are considerably wetter and exhibit more variability than model 

soil moisture. The scaled satellite retrieval X I  is given by the solution to 

where cdf , and cdf denote the cdf’s of the satellite and model soil moisture, respectively, 

and x is the unscaled satellite soil moisture. Since assimilation systems ingest instanta- 

neous satellite retrievals at the local scale, equation (1) is solved at each location after 

estimating the corresponding local cdf’s. The bold arrows in Figure 2 illustrate schemat- 

ically how the unscaled satellite retrieval x is converted into the scaled retrieval X I  (using 

the “ideal” cdf estimated from 1979-1987 SMMR retrievals.) Note that cdf matching 

corrects all moments of the distribution function regardless of its shape, subject to statis- 

tical errors associated with a limited sample size. In practice, we can expect meaningful 

estimates only for the first few moments, and limit ourselves to analyzing the mean, std, 

and skewness. 

Our goal is to obtain an acceptable estimate of the cdf used for scaling from only the first 

year of SMMR data. In order to control statistical noise in the cdf estimate, we estimate 
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the temporal statistics at a given site by using observations at neighboring locations that 

are within a chosen distance from the site. In other words, we apply a moving spatial 

sampling window to the computation of the statistics and implicitly assume some degree 

of ergodicity in the data. We then use this approximate estimate of the cdf (based on 

just one year of SMMR data) to solve equation (1) and obtain 9 years of scaled SMMR 

retrievals from the 9 years of unscaled SMMR data. Finally, we compare the statistics of 

the scaled dataset to those of the model soil moisture. Note that the model cdf used for 

scaling is based on model soil moisture from 1979 to 1987. 

3. Results 

Robust estimation of statistics requires sufficient data. Our cutoff criterion for estimat- 

ing the local cdf is that at least 100 measurements must be available within the spatial 

sampling window. Naturally, the degree of global coverage of cdf estimates obtained in 

this way increases rapidly with the size of the window, but so does the error associated 

with the ergodicity assumption. We are thus faced with a trade-off between coverage and 

error. To quantify this trade-off, we tried several spatial sampling windows with radii 

ranging from 0 to 5 degrees. 

Since the ergodicity error increases monotonically with the window size, a reasonable 

approach is to use the minimum window size for which the coverage of the approximate 

cdf estimates (obtained from one year of SMMR data) is almost complete relative to the 

coverage obtained when the cdf is estimated from 9 years of SMMR data without spatial 

sampling. For SMMR, this approach suggests that the optimal spatial sampling window 

has a radius of 2 degrees. The approximate SMMR cdf based on 1979 data only and 
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using a 2 degree spatial sampling window is illustrated in Figure 2 for the representative 

location in the Northern Great Plains. The rough agreement with the full SMMR cdf 

is an indication of the validity of the ergodicity assumption. When 9 years of SMMR 

retrievals are scaled using this approximate cdf estimate, the cdf of the resulting scaled 

SMMR retrievals (also shown in Figure 2) is much closer to the model cdf than before 

scaling. 

Figure 3 shows global maps of the biases obtained when the statistics of the scaled 

SMMR retrievals (using approximate cdf estimates) are compared to those of the model 

soil moisture. As in Figure 1, the biases in Figure 3 are computed for the period from 

1979 to 1987. While there is some bias left, scaling with the approximate cdf based on 

just one year of satellite data clearly removes much of the bias seen in Figure 1. The 

biases after scaling depend only weakly on the particular year used for estimating the cdf. 

This is not surprising, given that the bias in the mean is much larger than the interannual 

variability. Globally averaged, the bias in the mean (or std; or skewness) is reduced by 

80% (or 55%; or 25%) when only a single year of SMMR retrievals is used to estimate the 

cdf used for scaling. Since cdf estimation involves finite size bins, even scaling with the 

“ideal” cdf that is computed from the entire SMMR history does not completely eliminate 

the biases, particularly in the higher moments. In the ideal case, the bias in the mean (or 

std; or skewness) is reduced by 98% (or 90%; or 55%). 

4. Conclusions 

We use the 9-year SMMR record to demonstrate that temporal sampling of SMMR 

soil moisture retrievals can be traded off against spatial sampling. Robust estimation 
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of the statistics for bias removal via cdf matching was accomplished using only a one- 

year satellite record. When only one year of data is available and the cutoff criterion for 

computation of statistics is set to 100 data points, a reasonable approach is to estimate 

the cdf used for scaling by applying a spatial sampling window with a 2 degree radius. 

In this case, the global average bias in the mean of the scaled SMMR 9-year dataset 

(relative to model soil moisture) is reduced by 80% when compared to the original bias of 

the unscaled SMMR retrievals. For the bias in the std (skewness), cdf matching permits 

bias reduction by 55% (25%). With our method, current and future satellite retrievals of 

soil moisture can be assimilated more confidently in near-real time using only a one-year 

climatology. 

Although differences in the spatial and temporal mean and variability between state-of- 

the-art land surface modeling systems are substantial, our method does not depend on the 

particular model used precisely because we scale the satellite retrievals to be consistent 

with the given model. Finally, AMSR-E and future sensors yield improved measurements 

of brightness temperatures compared to SMMR. Most importantly, AMSR-E offers higher 

sampling rates than SMMR (around 2.5 times higher spatial resolution and wider swath 

width), which may permit reducing the size of the spatial sampling window and hence 

the ergodicity error. Nevertheless, the retrievals used here are based on a state-of-the-art 

algorithm, as is the modeling system. Therefore, the underlying errors in the retrieval 

algorithm, the land surface model, and the surface meteorological forcing data are unlikely 

to change significantly in the near future. Our approach presents a valuable tool for the 

imminent operational use of AMSR-E and future soil moisture retrievals. 
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Figure 1 : Difference in 1979-1 987 (top) mean and (bottom) standard deviation of SMMR soil 

moisture retrievals and model soil moisture [m3m-3]. 
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Figure 2: Cdf estimates at 46N, IOOW: (Squares) 1979-1987 SMMR retrievals, (Solid line, no 

marker) 1979-1 987 model soil moisture, (Circles) 1979 only SMMR retrievals using a spatial 

sampling window of 2 degree radius (approximate cdf), (Stars) 1979-1987 SMMR retrievals 

scaled with approximate cdf. 
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Figure 3: Same as Figure 1 except that SMMR retrievals were scaled with an approximate cdf 

estimated from 1979 only SMMR data using a spatial sampling window (2 degree radius). 
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Abstract 

Although surface soil moisture data from different sources (satellite retrievals, ground 
measurements, and land model integrations of observed meteorological forcing data) 
have been shown to contain consistent and useful information in their seasonal cycle and 
anomaly signals, they typically exhibit very different mean values and variability. These 
biases pose a severe obstacle to exploiting the useful information contained in satellite 
retrievals through data assimilation. A simple method of bias removal is to match the 
cumulative distribution hnctions (cdf) of the satellite and model data. However, accurate 
cdf estimation typically requires a long record of satellite data. We demonstrate here that 
by wing spatial sampling with a 2 degree moving window we can obtain local statistics 
based on a one-year satellite record that are a good approximation to those that would be 
derived from a much longer time series. This result should increase the usefulness of 
relatively short satellite data records. 


